
Scalable and Consistent Client Caching

on Distributed Key-value Stores

Charles Xu
Author

charles.xu@duke.edu

Jeffrey S. Chase
Advisor

chase@cs.duke.edu

Thesis submitted in fulfillment of the requirements
for graduation with distinction in the Department of

Electrical and Computer Engineering of Duke University

April 2017

Page 1 of 15

Contents

Abstract 3

1 Introduction 3

2 Background 4
2.1 Underlying Key-Value Store . 4
2.2 Consistency, Scalability and Causality 4
2.3 Assumptions . 5

3 Design 5
Consistency . 7
3.1 Open RPC as Session Lease . 7
3.2 Session Lease Only with Read Quorum 7
Scalability . 8
3.3 Imprecise Notification using Prefix of Key 8
3.4 Idle Client Suspension and Fast Recovery 9
3.5 Invalidation v. Update Notification . 9
3.6 Prefetch and Eviction . 9
Causality . 10
3.7 Causal Order of Updates using Logical Time 10

4 Application 11

5 Implementation 11

6 Evaluation 12
6.1 Volume Size and Number of Notifications 12
6.2 Recovery Speed Compared to Polling . 13
6.3 Invalidation v. Update . 13

7 Conclusion 14

References 15

Page 2 of 15

Abstract

We propose a client cache design for the distributed key-value stores that are sharded
and replicated using state machine replication on an NRW quorum without a primary.
The caching scheme is scalable and supports two consistency models—linearizability
of writes on each key, or a causal order of writes on all keys. Applications exhibit
different access patterns in the size of values stored on the remote, the range of key
space utilized, and the frequency of writes. Configurable parameters in our design allow
each application to balance among maintained states, generated traffic, and response
latency according to its distinctive pattern. Through implementation and simulation,
the cache performance is evaluated and quantitative results summarized.

1 Introduction

In large-scale storage services, caching has been a popular technique to reduce the
response latency and increase the system throughput. In a distributed setting, however,
writes to the remote storage impose significant challenges to any caching scheme in
terms of consistency, scalability, and causality. Clients who have cached a stale copy
of the value must learn of such updates in a way that scales and preserves the order of
dependency.

Polling with TTL (Time-to-live) has been used as the caching mechanism in many
systems, such as the Web and DNS (Domain Name Service). Every object is cached
with an expiration time, upon which the client polls the object again. This approach
is not ideal. Setting the TTL too long risks serving stale data, but setting it too short
essentially does not cache the object and risks congesting the network with polling
requests. Clients also have to keep track of expiration on a per-item basis, which does
not scale with growing number of cache entries.

Addressing this issue, recent work on client caching for replicated stores could be
generalized to two paradigms. One follows the gossip/epidemic/anti-entropy approach
[12], which is scalable but provides only eventual consistency, a much weaker model
than what we propose. The other is pubsub in primary-backup replication [6, 9], which
is strongly consistent and is informative to our design. However, we would like to go
further to address the case of symmetric replication with quorum-based protocol and
no primary.

The server-driven publish-subscribe caching scheme that we propose has the server
notify stale clients when subsequent writes commit. It ensures consistency, scales well,
and allows causal constraint. Consistency helps predict the outcomes of concurrent
events and therefore defines correctness and ensures safety. Scalability becomes chal-
lenging, because states about clients are maintained on the server to ensure timely
notifications to the right clients. Further, the distributed key-value store is sharded
and replicated, and thus so are the server states. Sharding and replication also make
causality difficult, which enforces a partial order of the global events to observe the
happen-before relationship [10].

Multiple techniques are devised to reduce the amount of server states while preserv-
ing consistency. Logical time is used to achieve causality should the application opts in.
A prototype has been built using Node.js and deployed on AWS EC2. Through sim-
ulations, the tradeoffs of different configurations are investigated. On recovering stale

Page 3 of 15

caches, our caching scheme spends 80% less time than does standard polling design.

2 Background

2.1 Underlying Key-Value Store

Sharding The key space is partitioned into shards such that accesses to keys on
different shards could be processed concurrently and the system throughput therefore
magnified. The total number of shards is dynamically elastic. Techniques such as
consistent hashing [1] enable the system to find the right shard for any given key, even
across view change.

Replication Each shard is also replicated on multiple replicas using state machine
approach, which assumes that each operation is deterministic and that each replica
executes the sequence of operations in the same order. Consensus is achieved using
NRW quorum voting [2]. It states that for a replica set of size N , the read quorum
consists of R replicas and W for write quorum. All reads and writes are sent to
and applied on the N replicas, but the value of a read is known once R replicas have
responded, and a write is committed if W or more replicas acknowledged. If W+R > N ,
then reads and writes from the NRW quorum is always consistent, because the read
quorum and the write quorum must overlap on at least one replica. It means that for
any read quorum, at least one replica has seen the latest write and therefore the read
quorum always returns the latest value.

Client as Coordinator Unlike the primary-backup replication where clients only
talk to the primary who is elected by the quorum to collect the votes from the replica
sets for each operation[3, 4, 5], our key-value store asks each client to be the coordinator
for all of its requests, read or write. The word coordinator is carefully chosen to differ-
entiate from a single primary because there are multiple coordinators in our system, as
there are multiple clients. It is assumed that clients, as well as replicas of the key-value
stores, are spatially separated and that the transmission delay significantly affects the
system performance. By acting as the coordinator for itself, the client removes the
extra round trip to the primary.

2.2 Consistency, Scalability and Causality

A consistent cache is consistent with the remote storage and serves its client the latest
value on a given key. The word consistency by itself is used in such narrow sense for
clarity. A more general concept, consistency models define the ordering of events at
concurrent sites by multiple actors. There is a spectrum of consistency models, from
weak to strong. Our design introduces and supports two of those (§3).

Staleness causes inconsistent reads. It could exist on either the client cache due to
multiple clients or the distributed key-value store due to multiple replicas, as shown
respectively in Figure 1(a) and 1(b).

To fight staleness and retain consistency, solutions can be categorized as either
client polling or server notification. In either approach, consistency and scalability are
conflicting objectives. In the former case, a low polling frequency may cache stale data,
but a high polling frequency risks congesting the network with refresh requests. In the
latter case, the server maintains states about clients, the amount of which grows as

Page 4 of 15

Alice

<key, 2>

Bob

<key, 1> <key, 2> Time

read commit

write commit

read stale

<key, 1>

Alice

<key, 1>

(a) Alice and Bob start with cold caches. Alice first reads the
value to her cache. Then Bob updates the value. Later, when
Alice reads again, a cache hit returns the stale value, unaware
of the update by Bob.

Alice

v=0

v=1

v=0 v=0

v=1

Bob

v=0

(b) Replicas start with value 0. Alice writes into all replicas and
received 2 acknowledgements so the new value is committed.
Assuming R = 1,W = 2, N = 3, Bob reads from one replica
and might get stale data, since R + W ≯ N .

Figure 1: Examples of Staleness in (a) Client Cache and (b) Replicated Store

more clients join. Server states may be reduced at the cost of more network traffic,
which is yet another scalability issue. Our objective, therefore, is to expand the utility
frontier and to achieve the balance of the two. Depending on the application, such
balance might shift and the system settings are configurable to accommodate different
scenarios.

Causality is defined as a happened-before relationship. In the context of the key-
value store, users might store pointers to other keys in the value. Therefore, if Alice
writes to key k1, and then Bob writes to key k2 with value that references k1, then we
say k1 causally precedes k2, and everyone has to learn about the write by Alice before
the write by Bob, because otherwise referencing k1 from k2 might return stale value.

2.3 Assumptions

At best, consistency on the client cache could only be as strong as that of the key-
value store. We assume that the key-value store is strongly consistent and focus on
maintaining consistency with caching. Applications above our system are assumed to
be read-intensive, so optimizations are to focus on minimizing read latency to improve
average latency. Secure and reliable channels are assumed to ensure in-order exactly-
once tamper-free delivery in peer-to-peer communications.

3 Design

The design follows a server-driven publish-subscribe approach. Clients who have cached
a particular key-value pair are called subscribers to that key, and the server will notify
these subscribers about subsequent updates on that key. The client refers to the client
library or stub, so the cache itself is an implementation detail whose existence remains
transparent to the application, as shown in Figure 2.

Page 5 of 15

Application

Client Library

Cache

KV

Remote Procedure Call

Server

KV

Server

KV

Server

Figure 2: An Overview of Server-driven Publish-Subscribe Cache Design

The basic approach to the pubsub design is to have the server maintain a subscrip-
tion set that tracks who has cached what. The subscription set introduces several key
challenges to scalability and consistency. The amount of subscription records grows as
the number of clients increases and the range active keys expands. The granularity at
which subscription sets are maintained is one of the key factors in scalability, but any
compression must also ensure timely and accurate notifications to protect consistency.
As clients come and go, the server must know when it is safe to reclaim resources and
how to recover stale caches when clients reconnect. Clients must distinguish server
failure from no committed writes, as both cases surface as no server notification re-
ceived. Given the store is replicated, so are server states. We look for ways to retain
the same set of information without replicating the server states on the entire replica
sets. Since the store is also sharded, messages from different shards arrive at the client
in a random order and causality is, therefore, difficult.

We approach these challenges with the following. Session leases are used to detect
server failure from no server notifications. Each client maintains sessions only with
replicas in the read quorum, so states are only replicated on the read quorum and
session renewal traffic reduced. The server may choose either invalidation or update as
the notification to subscribers, where the new value is attached to an update but not to
an invalidation. Keys are grouped into volumes, and subscription sets are managed per-
volume, so notifications are generated per-volume too. Every write is time-stamped,
and a single timestamp proves to encapsulate the states in the entire client cache and
enables fast recovery. Logical time is used to preserve the causal order of notifications
when delivered to the upper-layer application.

The cache supports two consistency models:

Processor Consistency [7] All committed writes to the same key are observed in
the same sequential order by all participants.

Causal Consistency [10] All committed writes to the key-value store are observed
in an order that preserve the happen-before relationships (causality).

The causal consistency is a stronger model than processor consistency, since causal
updates on a given key suffice to give the later but not vice versa. Performance,

Page 6 of 15

however, will suffer from higher latency for the stronger model. In the following, we
start by addressing both consistency and scalability and then extend to causality.

Consistency

3.1 Open RPC as Session Lease

As opposed to tracking expirations on every object returned by the server, we manage
client-side freshness with a single session with the server [8]. While the session is
maintained, the client cache is consistent with the key-value store, because the session
ensures connectivity between the client and server, and connectivity ensures delivery
of server notifications. A session is established when the server grants a session lease to
the client. Any session lease comes with an expiration time. The client maintains the
session by periodically renewing the session lease. The renewal of session lease serves
as liveness detection, which works even when the communication channel between the
client and the server is interrupted. The reason is that the client and the server have
agreed on the duration of the lease. Hence, when the session expires, both the client
and the server know and agree that the session ends. Resources allocated on behalf of
the client may then be safely reclaimed.

Once the session expires, consistency is no longer guaranteed. Reads are consistent if
the server fails (so no writes may be committed) but not so if the network is partitioned.
In an asynchronous network such as the internet, these two cases are indistinguishable
[3, 4, 5]. After the session expires, the cache notifies its application and continues
serving reads to provide higher availability.

We use timed open RPC (Remote Procedure Call) as session leases. The client
invokes on the server an RPC, which stays open until either server responds or the call
times out. The server may respond with a set of updates/invalidations to the client
cache, or simply return an ACK before the timeout if no writes are committed on
the key-value store. Any response by the server closes the RPC, and if so, the client
will immediately issue another. The session expires if the server fails to respond or
response fails to reach the client by the timeout. The advantage of open RPC is that it
merges lease renewal and invalidation messages, so traffic is reduced relative to sending
separate messages [9].

3.2 Session Lease Only with Read Quorum

Recall that the key-value store is replicated with the client being the coordinator for
itself. For consistent read and write from the replica set, one obvious approach is to
have the client maintain a session with each replica, as seen in Figure 3(a). The problem
of such design arises when the number of replicas is large. Leases and notifications from
each replica are replicated and transmitted independently, creating superfluous traffic
across the network.

This situation is avoided if the client maintains sessions only with replicas in its read
quorum as shown in Figure 3(b). Recall that the key-value store uses NRW quorum
consensus (§2.1), so consistency is maintained as long as the read and the write quorums
overlap, because at least one of the read replicas knows the latest committed write and
will notify subscribers whose read quorums it participates in. Our system is read-
intensive, so R is configured to be much less than W to optimize for lower read latency.

Page 7 of 15

Alice Bob

Replica set

Read quorum

(a)

Alice Bob

Write quorum

Read quorum

(b)

Figure 3: Alice’s write on key k is committed on every replica in the N quorum. Assume Bob has
cached a stale entry on k. Two Schemes to Achieve Consistent Read by Session Leasing with (a)
Quorum N and (b) Quorum R. Each replica in the respective quorum then independently notifies Bob
about Alice’s write.

The example in Figure 3(b) is configured as N = 3, R = 1, W = 3, commonly referred
to as ROWA (read one, write all).

The client retains a preference list of read replicas, which is sorted by the trans-
mission delay from the client to each replica. When one of the sessions times out, the
client establishes a new one with the first replica on its preference list who are not in
the last read quorum. Given the order of the preference list, the read quorum is always
chosen such that the average latency is minimized.

The new problem with maintaining sessions with only the read quorum is that the
subscription sets are no longer replicated on all N replicas. A new replica that just
joined the read quorum does not know the client cache states. The client needs to
inform the new replica about its cache to help the replica reconstruct the subscription
sets. Using techniques in §3.3 and §3.4, reconstruction is fast and scalable.

To mitigate the period of inconsistency gap between one replica failure and new
replica discovery, one may maintain R+1 sessions, namely one standby session, such
that any single fault is tolerated by seamlessly failing over to the standby replica.

Scalability

3.3 Imprecise Notification using Prefix of Key

Maintaining subscription sets on a per-key basis does not scale since the key space may
be huge. One mitigation is to group keys with the same prefix into one volume and
manage the subscription sets on a per-volume basis. Clients are subscribed to volumes.
Any update on a key k in the volume v generates notifications to all clients subscribed
to v. Indeed, it is possible that some clients in v do not cache on k, and if so the
client library simply ignores this notification. Notifications as such are imprecise but
accurate, in that all clients who do cache on k are notified.

The volume size is configurable by adjusting the length of prefix used to identify a
volume. The tradeoff is that larger volumes reduce the number of states that servers
must maintain but also create more unnecessary notifications. We explore such tradeoff

Page 8 of 15

through evaluation §6.

3.4 Idle Client Suspension and Fast Recovery

Idle clients remain in the subscription sets, and the server still grants leases and delivers
updates to them. Idleness could be detected by the client library when the application
running above has not read or written any keys for a long time. If the application is
idle, the client will stop renewing leases from the server. After the session expires, the
server may safely reclaim resources allocated to the idle client [11].

When the idle or partitioned client reconnects, its stale cache requires recovery
procedure upon session reestablishment. Purging the entire cache is not ideal, because
applications are read-intensive and writes are less frequent, so most entries in cache are
likely to be fresh.

We achieve fast recovery using the timestamp of the last server response before the
session expired. Along with a set of prefixes of keys in cache, that single timestamp
t captures the entire client cache state. For each prefix p that the stale client has
cached, the server returns from the volume identified by p all committed updates whose
timestamps are later than t. As shown in §3.7, the stale client must have known all
updates to the keys it has cached if those updates are issued before t. Everything
after t, the client missed. Knowledge of writes committed after t is sufficient to recover
consistency. The recovery response from the server follows the technique of imprecise
notification (see §3.3).

3.5 Invalidation v. Update Notification

Our cache design supports both invalidation and update as forms of server notifications
to subscribers. The difference is that the updated values are attached in an update
message but not in an invalidation. The advantage of sending updates is that clients
save another round trip to the server to read the new value (transmission delays are
assumed high). However, if the value is large in size (therefore high propagation delay)
and if the probability of another access is low for that key, then invalidations give
lower average latency and scale better. The choice between the two is configurable and
applications may choose based on their access patterns.

3.6 Prefetch and Eviction

Applications seldom read just one key-value pair. The value might reference another
key, whose value might reference another key. Such reference chains create a special
type of locality where linked key-value pairs are likely to be accessed soon. To further
optimize the average latency, the client may recursively prefetch other key-value pairs
that are linked by the ones already in cache.

The cache is bounded in size. Upon eviction, the client checks if there remains
in cache other keys with the same prefix as the evicted key. For quick look up, the
client may track prefixes in cache using the hierarchical hash tables in the form of
Map<prefix, Map<key, value>>. When a prefix maps to an empty key-value table,
then the client informs the server who then unsubscribes the client from the corre-
sponding volume given the prefix.

Page 9 of 15

Causality

3.7 Causal Order of Updates using Logical Time

To commit on the key-value store an update on key k or on key q that references k,
the server needs to verify that the issuing client has seen the latest value on k. This
consistency constraint prevents version branching and achieves Processor Consistency.
Its importance can be seen in the following scenario.

Consider the case where multiple clients issue concurrent updates on the same key,
as in Figure 4.

u0 u1 u2

u3 u4

Figure 4: Concurrent Updates with Version Branching. We are speaking of concurrency in a rather
strict sense. The client who applies u2 onto u1 has not seen u3 or u4, and the client who issues u3 and
u4 has not seen u2. Therefore, u4 does not causally precede u2 and u2 does not causally precedes u4.
We say that u2 and u4 are concurrent. So are u2 and u3.

Suppose that u3 and u2 are concurrent updates by different clients and that u3 is
issued slightly after u2. It is possible that u3 arrives at the server earlier than u2 does.
If u3 is committed by the time u2 arrives, then u3 is the latest write that u2 does not
know, so the server must reject u2 to protect consistency. Notice that for concurrent
updates as such, any ordering is consistent, but committed updates could never roll
back, so the first write wins forever [12].

Another challenging scenario is that causality must be preserved during the con-
struction of a reference chain. If Alice issues an update u1, and then Bob issues u2 that
points to u1, then all other clients must learn u1 before u2. If they learn u2 first without
knowing u1, then referencing u1 is either not found or stale at best. The dependency
here is that u1 causally precedes u2, which requires Causal Consistency.

Given only one shard, the consistency constraint at the start of this section suffices
to preserve causality. Bob knows about u1 before he issues u2. It must be that u1 is
delivered to or polled by Bob, which means u1 has been committed on the key-value
store. It follows that other clients either have already received an update about u1,
or u1 and u2 together are delivered in the next exchange. It is never the case that u1
arrives at a later update than u2.

The problem is worse when u1 and u2 are stored on different shards, as illustrated
in Figure 5. Causality is retained if the client only delivers an update u when u is
stable, i.e. all updates that causally precede u are received. Let [u1, u2, ..., ui] be a
stream of updates on one shard of the key-value store. Say in the latest exchange, the
shard replies with the update ui. It means the client has already known all the updates
from that shard up to ui−1, because if not, ui−1 will be part of the server response.
Likewise, ui+1 has not been applied on the key-value store just yet, because if so, ui+1

will in the response as well. We consider u stable if all the timestamps of the latest
responses from all shards are later than that of u. Nothing that happens later than u
could possibly cause u, and everything earlier than u the client has already known.

Page 10 of 15

Chuck

u1 u2

Dan

Figure 5: Sharded Key-value Store Given Random Order of Messaging. Here, Chuck writes both u1

and u2 and knows u1 causally precedes u2. Even if Chuck waits until u1 committed and then issues
u2, Dan could still receive u2 before u1.

The subscript for each update u is a form of logical time, which defines a total order
of events that satisfies the partial ordering constraint by causality. It is worth pointing
out that such order, albeit deterministic, is rather arbitrary and is not the only one
that preserves causality [12]. The causality captured using the logical time also relies
on the information exposed to the system. Causal exchanges outside of the system
may be considered concurrent by the system. The problem of incomplete observation
is a difficult one and is beyond the scope of this paper to discuss it in any detail.
An attempt at this problem using physical time and clock synchronizing algorithm is
described in [10].

4 Application

Many systems of critical services for a secured internet can be seen as applications
of key-value stores, examples including Secure Border Gateway Protocol (S-BGP),
Domain Name System Security Extensions (DNSSEC), Certificate Authority as Public
Key Infrastructure (CA-PKI), etc [13]. They store values in the form of certificates. A
certificate is signed with the private key of its issuer, so its content is safe from being
tampered [14]. The primary task of applications as such is to validate a given assertion
about a chain of certificates. The goal of the client cache is to minimize the total time
it takes for such validation. Causality is desirable to ensure correctness of validation.

5 Implementation

We build and open-source1 a prototype of the cache design we propose. The tech stack
is summarized below.

Aspect Technology

Server Node.js + Express
Client Node.js
API RESTful JSON
Deployment AWS EC2

1Public repository hosted on Github: https://github.com/charleschengxu/safeclientcache

Page 11 of 15

Both the server and client library are implemented using Node.js for its native sup-
port for JSON so no explicit marshalling/serializing/pickling/flattening is needed to
issue an RPC. The RPC interface is RESTful in JSON, independent of the backend
server framework or language, so one could easily integrate with any existing production
services with the interface intact. RESTful API runs on HTTP, which is an applica-
tion layer protocol and ensures exactly-once semantics for peer-to-peer communication.
Express is a web server framework on Node.js that simplifies URL routing and API
binding. We use AWS EC2 (us-west-2, Oregon, US) as our VPS (virtual private server)
and by deploying the key-value store on the remote, we are able to obtain more realistic
performance measurements.

6 Evaluation

6.1 Volume Size and Number of Notifications

The prefix of each key is used to group keys into volumes for scalability. The length of
the prefix is configurable by the application, and the tradeoffs are focused on the size
of the subscription sets maintained on each server and the number of notifications sent
by the server given subsequent updates.

The results shown in Figure 6 is obtained using the following test bench. It first
spins up the server and then sequentially starts one client at a time. Each client is asked
to perform 1,000 operations, 20% of which are writes and the rest are reads. Subsequent
writes generate notifications to other clients, and the server counts the total number
of such messages. Values stored on the key-value store are 32-bit integers. We used
updates instead invalidation for server notifications. The keys used by all clients are
hashed using SHA1 for the more uniformed distribution.

1 2 3 4 5 6 7 8

Prefix length

0

0.5

1

1.5

2

2.5

3

S
u

b
s
c
ri
p

ti
o

n
 S

e
t

S
iz

e

10
4

1

2

3

4

5

6

7

N
u

m
b

e
r

o
f

N
o

ti
fi
c
a

ti
o

n
s

10
4

Subscriptions

Notifications

Clients = 25

Clients = 20

Clients = 15

Figure 6: Scalability as Functions of Prefix Length and Number of Clients

Given shorter prefix length, keys are partitioned into larger volumes, so the sub-
scription sets are effectively compressed. At the same time, larger volumes lead to more

Page 12 of 15

imprecise notifications so the total number of messages is larger for shorter prefixes.
In this particular case, when the prefix length shrinks from 8 to 2, the total number
of messages sent rises by about only 30% while the size of subscription sets drops by
about 80%. Depending on the number of clients, the write frequency, and network
bandwidth, different applications may set the prefix length to suit their needs.

6.2 Recovery Speed Compared to Polling

We compare the performance of our pubsub design to that of traditional polling, results
shown in Figure 7.

We use prefix length of 3 for volume keys and assume 20% of the client cache is
stale before recovery. The polling procedure that we implement is to send the server
keys that the client knows and the server replies with values for those keys, and finally
the client updates corresponding keys in cache if its value is stale.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total Cache Entries

0

50

100

150

200

250

300

350

400

T
im

e
 (

m
s
)

Pubsub

Polling

Figure 7: The Time It Takes to Recover a Stale Client Cache

Apparently, the pubsub design performs better. It is worth pointing out the step-
like latency in both cache designs. The server maintains an in-memory hashmap as a
mock of the key-value store. The jumps result from the multi-layer physical cache on
the machine, since lower cache layers have larger sizes and higher latencies.

6.3 Invalidation v. Update

The tradeoffs of implementing server notifications as either invalidations or updates
are discussed in §3.5, and are explored further here. The simulation provides us a peek
into how value sizes and network latency affect the performance of this cache design.

We assume values are of equal size and use prefix length of 10 for volume keys.
Five clients are created at once doing random read/write on the same 1,000 keys to
populate their cache. Then, they repeat the same procedure to access the same set of

Page 13 of 15

keys again, and we time the second run to see how the cache may help, given different
value size and propagation delay, as results shown in Figure 8.

0 1 2 3 4 5 6 7 8 9 10

Value Size (Bytes) 10
4

0

1

2

3

4

5

6

7

8

T
im

e
 T

o
 C

o
m

p
le

ti
o

n
 (

m
s
)

10
4

Updates

Invalidation

(a) Server and Clients Connected to the Same Router

0 1 2 3 4 5 6 7 8 9 10

Value Size (Bytes) 10
4

1

2

3

4

5

6

7

T
im

e
 T

o
 C

o
m

p
le

ti
o

n
 (

m
s
)

10
5

Updates

Invalidation

(b) Server in Oregon and Clients in North Carolina

Figure 8: Time to Completion given Various Value Sizes

In either case, we see the two lines crossing. Updates outperform invalidation when
the value size is small, and the reverse is true when value size is large. This observation
is what we expect. The reason is that when the value size is large, propagation delay
starts to dominate transmission delay and sending large blobs actually slows the system
down, especially when the updated values have a low chance of being read again.

7 Conclusion

In this paper we have described a cache design for the distributed key-value stores that
are sharded and replicated. Consistency, scalability, and causality issues are addressed
with specific design proposals. We have implemented such caching scheme and deployed
on AWS EC2 to evaluate its performance and the tradeoffs of various configurations,
which demonstrates its flexibility to support and optimize for different access patterns.
Future work includes supporting distributed transactions on top of the client cache.

Page 14 of 15

References

[1] D. Karger, et al. Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the World Wide Web. Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing. May 1997.

[2] G. DeCandia, et al. Dynamo: amazon’s highly available key-value store. ACM SIGOPS
Operating Systems Review. 41(6):205–220. October 2007.

[3] B. Oki, et al. Viewstamped replication: A New Primary Copy Method to Support Highly-
Available Distributed Systems. ACM Symposium on Principles of distributed computing.
8–17. August 1988.

[4] L. Lamport. Paxos made simple. ACM SIGACT News. 32(4):18–25. December 2001.

[5] D. Ongaro, et al. In search of an understandable consensus algorithm. USENIX Annual
Technical Conference. June 2014.

[6] A. Adya, et al. Efficient optimistic concurrency control using loosely synchronized clocks.
ACM SIGMOD. 23-34. May 1995.

[7] R. C. Steinke, et al. A unified theory of shared memory consistency. Journal of the ACM.
51(5): 800849. September 2004.

[8] P Hunt, et al. ZooKeeper: Wait-free Coordination for Internet-scale Systems. InUSENIX.
(8)11. June 2010.

[9] M. Burrows. The Chubby lock service for loosely-coupled distributed systems. Operating
Systems Design and Implementation. November 2006.

[10] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM. 21(7):558–565. July 1978.

[11] Y. Jian, et al. Engineering Web Cache Consistency. ACM Transactions on Internet Tech-
nology, 2(3):224–259, August 2002.

[12] D. B. Terry, et al. Managing update conflicts in Bayou, a weakly connected replicated stor-
age system. Proceedings of the fifteenth ACM symposium on Operating systems principles.
172–182. December 1995.

[13] Q. Cao, et al. Certificate Linking and Caching for Logical Trust. n. p. November 2016.
arxiv.org/ftp/arxiv/papers/1701/1701.06562.pdf.

[14] R. L. Rivest, et al. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM. 21(2):120–126. February 1978.

Page 15 of 15

